
APPENDIX

 program cartogram (output);

 {Pascal translation of Basic V MakeCarto program.}

 {This version is geared to real numbers as the
 mainframe it was tested on appears not to realize
 that life is much easier without them. The Basic
 and C versions which were actually used ran on
 Archimedes and Sun machines with RISC chips in them-
 both were of course much faster (a Fortran translation
 was made - this is possible, but, like most things in
 that language, not a good idea). Pascal is used here
 as it is most likely to be understood.}

 {The two recursive procedures and tree structure are not
 strictly neccessary, but speed things up by a couple
 of orders of magnitude or more, and so are included.}

 {Constants are currently set for the 64 counties
 and 10,000 iterations - a suitably large number
 (Counties do actually converge very quickly - there
 are no problems with the algorithm's speed -
 in fact it appears to move from O(n*n) to O(n log n)
 until other factors come into play when n reaches
 between 10,000 and 100,000 zones...}

 const
 itters = 10000;
 zones = 64;
 ratio = 0.4; {has to be some-what less than 0.5}
 friction = 0.25; {this is another magic number - explained elsewhere}
 pi = 3.141592654;

type
 vector = array [1..zones] of real;
 index = array [1..zones] of integer;
 vectors = array [1..zones, 1..21] of real; {no zone I know of has}
 indexes = array [1..zones, 1..21] of integer; {more than 21 neighbours}
 leaves = record
 id : integer;
 xpos : real;
 ypos : real;
 left : integer;
 right : integer;
 end;
 trees = array [1..zones] of leaves;

var
 infile, outfile :text; {input and output files}
 list :index; {list for nearest neighbours}
 tree :trees; {tree structure - see below}
 widest, distance :real;

 closest, overlap :real;
 xrepel, yrepel, xd, yd :real; {Suitably small distance units}
 xattract, yattract :real; {should be used - for Britain}
 displacement :real; {metres is standard. It makes}
 atrdst, repdst :real; {little difference if reals are}
 total_distance :real; {used, on most machines integers}
 total_radius, scale :real; {are much faster and more sensible}
 xtotal, ytotal :real; { - even for gravity type models!}
 zone, nb :integer;
 other, itter :integer;
 end_pointer, number :integer;
 x, y :index; {arrays for zone centroids}
 xvector, yvector :vector; {arrays for zone velocities}
 perimeter, people, radius :vector; {other information about the zones}
 border :vectors; {border lengths between zones}
 nbours :index; {number of neighbours per zone}
 nbour :indexes; {zone neighbours - 0 for the sea}

 {Recursive procedure to add the zone designated by global variable}
 {"zone" to the "tree" structure - this was written in a hurry, is messy}
 {but works - I'm afraid it uses a lot of global variables, but}
 {the structure is probably well known to any reader who already works with}
 {computers and geographic data.}

 procedure add_point(pointer,axis :integer);
 begin
 if tree[pointer].id = 0 then {there is a free leaf so}
 begin {put the zone on it}
 tree[pointer].id := zone;
 tree[pointer].left := 0;
 tree[pointer].right:= 0;
 tree[pointer].xpos := x[zone];
 tree[pointer].ypos := y[zone];
 end
 else {Decide which way to go}
 if axis = 1 then {down the tree depending}
 if x[zone] >= tree[pointer].xpos then {on whether we are at a}
 begin {horizontal or vertical}
 if tree[pointer].left = 0 then {"branch" and where the}
 begin {zone to be placed is."}
 end_pointer := end_pointer +1;
 tree[pointer].left := end_pointer;
 end;
 add_point(tree[pointer].left,3-axis);
 end
 else
 begin
 if tree[pointer].right = 0 then
 begin
 end_pointer := end_pointer +1;
 tree[pointer].right := end_pointer;
 end;
 add_point(tree[pointer].right,3-axis);

 end
 else
 if y[zone] >= tree[pointer].ypos then
 begin
 if tree[pointer].left = 0 then
 begin
 end_pointer := end_pointer +1;
 tree[pointer].left := end_pointer;
 end;
 add_point(tree[pointer].left,3-axis);
 end
 else
 begin
 if tree[pointer].right = 0 then
 begin
 end_pointer := end_pointer +1;
 tree[pointer].right := end_pointer;
 end;
 add_point(tree[pointer].right,3-axis);
 end
 end;

 {This procedure recursively recovers the "list" of zones within}
 {"distance" horizontally or vertically of the "zone" from}
 {the "tree". The list length is given by "number"}

 procedure get_point(pointer, axis :integer);
 begin
 if pointer>0 then
 if tree[pointer].id > 0 then
 begin
 if axis = 1 then
 begin
 if x[zone]-distance < tree[pointer].xpos then
 get_point(tree[pointer].right,3-axis);
 if x[zone]+distance >= tree[pointer].xpos then
 get_point(tree[pointer].left,3-axis);
 end;
 if axis = 2 then
 begin
 if y[zone]-distance < tree[pointer].ypos then
 get_point(tree[pointer].right,3-axis);
 if y[zone]+distance >= tree[pointer].ypos then
 get_point(tree[pointer].left,3-axis);
 end;
 if (x[zone]-distance < tree[pointer].xpos)
 and (x[zone]+distance >= tree[pointer].xpos) then
 if (y[zone]-distance < tree[pointer].ypos)
 and (y[zone]+distance >= tree[pointer].ypos) then
 begin
 number := number +1;
 list[number] := tree[pointer].id;
 end;
 end;

 end;

 {Here's the program, first of all set input and output}
 {and intitialize a few things.}

 begin
 reset(infile,'FILE=county.in');
 rewrite(outfile,'FILE=county.out');

 total_distance :=0;
 total_radius := 0;

 {read in the data (an example input file is shown elsewhere) and}
 {find a standard scale for calculating the zone's circle radii.}

 for zone := 1 to zones do
 begin
 read(infile, people[zone],x[zone], y[zone], nbours[zone]);
 perimeter[zone] := 0;
 for nb := 1 to nbours[zone] do
 begin
 read(infile,nbour[zone,nb], border[zone,nb]);
 perimeter[zone] := perimeter[zone] + border[zone,nb];
 if nbour[zone,nb] > 0 then
 if nbour[zone,nb] < zone then
 begin
 xd := x[zone]- x[nbour[zone,nb]];
 yd := y[zone]- y[nbour[zone,nb]];
 total_distance := total_distance + sqrt(xd*xd+yd*yd);
 total_radius := total_radius + sqrt(people[zone]/pi)
 + sqrt(people[nbour[zone,nb]]/pi);
 end;
 end;
 readln(infile);
 end;

 writeln ('Finished reading in topology');

 scale := total_distance / total_radius;
 widest := 0; {widest is to be the radius}
 {of the widest circle.}
 for zone := 1 to zones do
 begin
 radius[zone] := scale * sqrt(people[zone]/pi);
 if radius[zone] > widest then
 widest := radius[zone];
 xvector[zone] := 0;
 yvector[zone] := 0;
 end;

 writeln ('Finished scaling by ',scale,' widest is ',widest);

{main iteration loop of cartogram algorithm}

 for itter := 1 to itters do
 begin

{bit of proggy to create a tree}

 for zone := 1 to zones do
 tree[zone].id := 0;
 end_pointer := 1;
 for zone := 1 to zones do
 add_point(1,1);

 {end of esoteric tree building}

 displacement := 0.0; {to keep a note of how much}
 {things are moving.}
{loop of independent displacements}

 for zone := 1 to zones do
 begin
 xrepel := 0.0;
 yrepel := 0.0;
 xattract := 0.0;
 yattract := 0.0;
 closest := widest; {to find out the closest neighbour}

 {get all points within widest+radius(zone) into list of length "number"}

 number := 0;
 distance := widest + radius[zone];
 get_point(1,1);

 {work out repelling force of overlapping neighbours}

 if number > 0 then
 for nb := 1 to number do
 begin
 other := list[nb];
 if other <> zone then
 begin
 xd := x[zone]-x[other];
 yd := y[zone]-y[other];
 distance := sqrt(xd * xd + yd * yd);
 if distance < closest then
 closest := distance;
 overlap := radius[zone] + radius[other] - distance;
 if overlap > 0.0 then
 if distance > 1.0 then
 begin
 xrepel := xrepel - overlap*(x[other]-x[zone])/distance;
 yrepel := yrepel - overlap*(y[other]-y[zone])/distance;
 end;
 end;
 end;

 {work out forces of attraction between neighbours}

 for nb := 1 to nbours[zone] do
 begin
 other := nbour[zone,nb];
 if other <> 0 then
 begin
 xd := x[zone]-x[other];
 yd := y[zone]-y[other];
 distance := sqrt(xd * xd + yd * yd);
 overlap := distance - radius[zone] - radius[other];
 if overlap > 0.0 then
 begin
 overlap := overlap * border[zone,nb] / perimeter[zone];
 xattract := xattract + overlap*(x[other]-x[zone])/distance;
 yattract := yattract + overlap*(y[other]-y[zone])/distance;
 end;
 end;
 end;

 {now work out the combined effect of attraction and repulsion}

 atrdst := sqrt(xattract*xattract+yattract*yattract);
 repdst := sqrt(xrepel*xrepel+yrepel*yrepel);
 if repdst > closest then {Things are too close, scale them}
 begin {down to avoid "whiplash" effects}
 xrepel := closest * xrepel / (repdst + 1);
 yrepel := closest * yrepel / (repdst + 1);
 repdst := closest;
 end;
 if repdst > 0 then
 begin
 xtotal := (1-ratio)*xrepel+ratio*(repdst*xattract/(atrdst+1));
 ytotal := (1-ratio)*yrepel+ratio*(repdst*yattract/(atrdst+1));
 end
 else {nothing's overlapping}
 begin
 if atrdst > closest then {don't move too fast!}
 begin
 xattract := closest*xattract/(atrdst+1);
 yattract := closest*yattract/(atrdst+1);
 end;
 xtotal := xattract;
 ytotal := yattract;
 end;

 {record the vector for posterity}

 xvector[zone] := friction *(xvector[zone]+xtotal);
 yvector[zone] := friction *(yvector[zone]+ytotal);
 displacement := displacement + sqrt(xtotal*xtotal+ytotal*ytotal);
 end;

 {update the positions}

 for zone := 1 to zones do
 begin
 x[zone] := x[zone] + round(xvector[zone]);
 y[zone] := y[zone] + round(yvector[zone]);
 end;
 displacement := displacement / zones;
 writeln('Iteration ', itter, ' displacement ', displacement);
 end;

 {we've finished all the iterations so}
 {write out the new file}

 for zone := 1 to zones do
 writeln(outfile,radius[zone]:9:0,',',x[zone]:9,',',y[zone]:9);
 end.

